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The problem of using the form of the Lagrange function of a conservative dy- 
namic system specified in an arbitrary generalized coordinate system as the 
basis for establishing the existence of a point coordinate transformation so as 
to have some of the new coordinates as ignorable is considered. Synge’s con- 

ditions [l] are presented in a form similar to that of the invariant character - 

istic of the metric of rotation. A sequence of calculations is indicated by 
which it is possible to establish the existence ignorable coordinates in con - 
servative systems with three degrees of freedom, and obtain in explicit form 
the related point transformation. Two applications of differential invariants 

and parameters for solving the problem with an arbitrary number of degrees of 

freedom are described. 

Synge [1] established an effective criterion for solving this problem for a system 
with two degrees of freedom when the system force function is not constant (first results 
were published earlier [2 -4 [ ). The possibility of using Lie’s group theory for solving 

this problem was suggested in [5], but now new results were obtained ( see [ 3, 61). 
Papers [7,8 ] should, also, be mentioned. 

1. Let or and q 2 be arbitrary generalized coordinates of a conservative dy- 
namic system with two degrees of freedom. Let us, first, consider a system whose 

potential energy V (q’, 4’) = const. 
As shown in [9&a set of surfaces &’ whose first basic quadratic form 

02 = 2Tdt2 = aijdq’dq’ (1.1) 

where T is the system kinetic energy and recurring subscripts indicate summation, 
exists in a three-dimensional Euclidean space. 

Thus the problem of determining the existence of ignorable coordinates of metric 

(1.1) reduces to the problem of existence of an isometric image of surface S on some 
surface of revolution [lo 1, Such image exists when one of the following conditions is 
satisfied [lo ] : 

K 3 const (1.2) 

J (K, A,K) = J (K, A2K) = 0 (1. :3 1 

where 
(1.4) 

(1.5) 
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In these formulas J (f, w) is the Jacobian of functions f and W, and K is the 
Gaussian curvature of surface s (curvature R isdefined in termsof functions agj 
and its partial derivatives are determined by Gauss’ formula [9 1 10 3 ) . Note that de- 
finitions (1.4) and (1.5 ) are valid for any n. When K qk con&, the point trans- 
formation 

Q’ = K G-z’, q2), Q" = x kl, 4") 

where X = COnst is the integral of the differential equation of the orthogonal tra- 
jectories of the line of Gaussian curvature K = con&, reduces the system to a form 
con~~ing the ignorable coordinate Q”. 

The definition of the ignorable coordinate implies that when V $r const the 
fulfillment of conditions (1.2 ) or (1.3 ) is insufficient, although they are necessary, If 
K + const,itisnecessary, and with condition (1,3) it is also sufficient for J (K, 

V) = 0. 
For the existence of a coordinate system with an ignorable coordinate it is generally 

necessary and sufficient that [ 1,3 1 

U’jVliVj I VI = tZ’jVz$Vj I Vz (1.6) 

hl(V2Y - (h + ha + bn) (V# VI + 
(h221 + hl2 + h22) v2 (Vd2 - h222 (W = 0 

(h, = VT f (d’ViVj>, Vr = dV I ag’) 

where V,,, b,, and hrst are covariant derivatives. The first of formulas (1.6 ) 
shows that equipotential lines are geodetically parallel, and the second is obtained 
from the condition that the curvature of each of such lines is constant, 

Let us show that conditions (1.6 ) can be represented as 

J (V, AIV) = 0, J (V, AzV) = 0 
cl. 7 1 

The differential parameters AIV and AJ are invariant to point transfor - 
mations and, moreover, since in a coordinate system with an ignorable coordinate func- 
tions T/‘, ArV, and A,V depend on a single coordinate, formulas (1,7 ) (with the first 
relationships in (X.6) and (1,7) simply coincident ) are valid for any selection of COOP 

dir-rates. Conversely, if conditions (I. 7 ) are satisfied, the system is reducible to the 
form with an ignorable coordinate and, consequently, conditions (1.6 ) are valid. 

To prove this we pass to new generalized coordinates 
(1.8) 

Q’ = V (ql, $‘), Q” = 1 P (%VI -&IV,) &’ + ~1 (%VI - ada) ha 

( P is the integrating coefficient 1, In new coordinates the Lagrange function is 
of the form 

L=z & [(Q-l," + q] + Q" 
(1.9) 

We set in (1.8) p = o (V) / C. The condition of total differential with al- 
lowance for (1.4 ) and (1.5 ) yields 
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hence 

and, consequently, Q” in formula (1.9) is an ignorable coordinate. The equivalence 
of conditions (1.6) and (1.7 ) is, thus, proved. 

Hence for a system with two degrees of freedom the solution of the problem can 

be formulated in terms of differential parameters of functions K and v. 

2, Let us consider a system with three degrees of freedom under condition that 

the potential energy V + const. The sequence of calculations and transformations 

1” - 5” specified below is used for solving the question of existence of a coordinate 
system whose at least one of the gereralized coordinates is ignorable . We note that non- 
fulfilment of the conditions 2” and 5” implies that none of coordinate systems 
contains ignorable coordinates. 

1”. If in the Lagrange function of the system all coordinates $, $, and q3 are 

positional, we pass to the new coordinates 

Q1 = Q’ W, q2, q3), Q” = Q” 03, $9 q”), Q = Q (V 

where Q is an arbitrary function and functions Q’ and Q” satisfy the unique 
condition 

“d j;rl’~~;;) # 0 
9 9 

We then calculate the linear element of hypersurface v = const of the system 

configuration space 

dsa = E (Ql, Q2, Q) (dQ1)2 + 2F (.) dQ1dQ2 + G (*) (dQ2J2 
(2.1) 

and its Gaussian curvature K = K (Ql, Q’, Q). Weassume that K /o_const = const. 
In all calculations in transformations 2” and 3” coordinate Q is to be taken 

as a constant parameter. 
2”. We determine AIK and AzK in the space with metric (2.1). It is nec- 

essary that 
A,K = cp (a, Q), A& = Q (K, Q) 

3”. We determine function P by integrating the total differential 

dP=p(F+&-EE)dQ'+p(G+- F+)dQ2 

4”. We retain coordinate Q and pass from Q’ and Q” to coordinates N = 

N(K) ( N is an arbitrary function) and P . The system Lagrange function 

assumes the form 

L = ‘I2 I&I (NV Q) Fa + &a (NY Q) W2 + 2&s (J’, NY Q) P’Q’ f (2.2) 

X23 (P, N, Q) N-Q’ + G33 (P, A’, Q) Q’“1-k w (Q) 
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5”. If coefficients Gij satisfy the conditions 

(G& = 0, (Gs3 -z)p'= 0 

U&P= 0, (zrN p = 0 

(2.3) 

where the prime denotes a partial derivative of a function with respect to the related 

variable, then there exists the transformation 

P = p (R, Q) (2.4) 

which reduces Lagrangian (2.2) to the form with an ignorable coordinate R. Function 
(2.4) is determined by integrating total differentials. 

We begin the substantiation of sequence 1” - 5" by proving the following lemma. 

Lemma. When a conservative dynamic system has an ignorable coordinate and 

the Gaussian curvature of an arbitraryequipotentialhypenurface v = const is not a 

constant quantity for that hypersurface, there exists a coordinate system in which the 

Lagrangian 
L = ‘/a [Bii(N, Q)R- + Bm (-W2 + Wa(-)R'Q'+ CL 5) 

%a(.) N'Q'+B,,(-)Q'21 +w(Q) 

proof . Let us assume that among the system coordinates ~‘9 ~~9 q3 the co- 

ordinate q1 is iguorable . Since V $.E const, we can assume f3Vlaqa # 0. We carry 

out the substitution 
q’ = ql, qa = cj”, Q = Q (V) 

The system Lagrangian now becomes 

L = ‘/a I& (a29 0) (q")" -I- 2 h2 (‘1 q”q’2 + b22 (*I (q’2)a + 2 b,s (*I X (2.6 1 

rr"Q' + 2hs (-1 qa2Q' + bss (-1 Q'21 + w (Q) 

The linear element of hypersurface V = con& 

as2 = bi, (dQ1) 2 + 2 b,,dqldqa + baa (42)a (2.7 ) 

does not explicitly contain the coordinate q1 . Hence the Gaussian curvature K = 
K (P, Q) , and in the space with metric (2. ‘7 ) by virtue of conditions (1.3 ) 

A,K = ~P(K, Q), A,K =9W, Q) 

The differential equation of the orthogonal trajectories of lines of constant Gaussian 
curvature on the hypersurface V = const 

b&q1 + b,dq2 = 0 

has, obviously, the integral R = conat, where 

R = q1 -t- A (q2, Q) 
In coordinates R, N = N (K), Q Lagrangian (2.6 ) assumes the form (2.5 ) . 
The proof of the lemma shows that, when a conservative dynamic system has an 

ignorable coordinate, then in the system space configuration a linear element of the 
equipotential hypenurface is also reducible to the form with an ignorable coordinate. 
Hence in accordance with (1.3 ) conditions 2” are necessary. It is, moreover evident 
that any two general solutions P and R of the differential equation of orthogonal 
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trajectories of lines K = const on hypersurface v = const are related by formula 
(2.4 ). Comparing formulas (2.2) and (2.5)) for the system Lagrangian we obtain 

Gn $- ’ = BI1, 
( ) G,,~~+GI~~=BI~ (2.9) 

G II 
( ) 
g ’ + 2G13 ?$ + G33 = B33 

In these formulas only Gil represent known functions. Let us show that they must 
satisfy conditions (2.3 ) . 

The first of conditions (2.3 ) follows from (2.8 ), and from the first two of formulas 
(2.9 ) and (2.4 ) we obtain 

ap 
-+,g=-~+*,g=o (2.10 1 -zz 

afz 

(f= ~/B11,g=B1d~/B11) 

Substitution of the expression dP / aQ into the third of formulas (2.9 ) yields 

f& - F = &3 - g2 
11 

from which follows the second of conditions (2.3 ) . The condition of equality of related 
mixed derivatives of function P yield 

( > 
+‘f++=o, 

11 h’ 11 ( > 
-&f++ 

(2.11) 

G ’ -13 
( > 

f 
G1l 

-7 
P If%, 

-(~,x’(&-]Np.*=o 

and furthermore 

fp’ = 0, g,’ = 0 (2.12 1 

The problem is thus reduced to the analysis of compatibility of Eqs. (2.11) and 
(2.12) with unknown functions f and g. 

Using the equality of related second order mixed derivatives of function 1x1 f, 

from 4s. ( 2.11 ) and (2.12) we obtain three relationships , one of which yields the 
third of conditions (2.3 ), the second is the corollary of the last of Eqs. (2.11 ), and the 

third is identically satisfied. The condition of compatibility of Eqs. (2.11) and (2.12) 
relative to function g yields the fourth of conditions (2.3 ). The necessity of con - 
dition (2.3 ) is proved. 

Conversely, if coefficients GiJ satisfy conditions (2.3 ), there exists transfor - 
mation (2.4) which reduces Lagrangian (2.2) to the form with an ignorable coordinate 

R. Function (2.4) can be determined by integrating the compatible system of Eqs. 

(2.10 ) in which the functions f and g are obtained by theintegration of Eqs. (2.X ) 
and (2.12 >, and the system of these equations is also compatible. 

3, The problem of determining the existence of ignorable coordinates in systems 
with an arbitrary number n of degrees of freedom can be solved if the differential in- 
variants and potential energy parameters of the system are known. 
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Below we consider cases when n and n - 1 invariants and parameters are known. 
Certain definitions are required for the subsequent analysis [lo, 111. Let $, . . ., 

4” be the generalized coordinates of a dynamic system and ail (q) be the coef - 
ficients of its doubled kinetic energy. 

Definition 1. The term differential invariant denotes any expression of rp 
consisting of coefficients &j and their partial derivatives with respect to variables 

Q’ up to some order and which, as the result of the arbitrary substitution 

Qi = Qi (ql, . . . , q”) (j.= I, . . . , n) (3.1) 

is transformed into the same expression consisting of coefficients Arrr of converted 
form and of its partial derivatives with respect to the new variables Q”, i. e. 

where the dots denote other terms of the indicated kind. 
Definition 2. When the expression of q contains in addition arbitraryfunc- 

tiOIl.9 f, w, **a of variables 4’ and their partial derivatives with respect to such 

variables up to some order, and which by the use of substitution (3.1) is converted into 
the same expression consisting of coefficients of converted form and of partial derivatives 
of the same functions with respect to new variables, that expression is called the dif- 

ferential parameter of functions f, w, . . . . This definition is represented by the equality 

cp . .., Aij, e e 

aAij GAi ,i 
.,- ,..., -,*.., 

aQ’ 8Q’aQ” 
F, W, . . . 

aF aw . ..) aQL7...‘-$~... = 

> 

cp ( 
aaij 

LZij, . . . , - 

a2aii . . . ) 

aqp ” ’ * 
,- )..., f,w )... 

aqpaqs 
at aw . . . ,- 
aq 

k , . . . , -I- ) . . . 
aq > 

For example, the scalar curvature of the kiemann space of the system configuration 
is a differential invariant [9 1, Formulas (1.4 ) and (1.5 ) are examples of differential 
parameters of arbitrary function f. The expression 

v (f, w) = &$-$ 

is called mixed differential parameter of the first order of functions f and W. Using 

all possible combinations of operators &, As, and A to the already known dif- 

ferential invariants and parameters it is possible to obtain differential invariants and 

parameters of higher orders. 

The above definition with the definition of the ignorable coordinate of a dynamic 
system yield the following theorem. If a dynamic system with n degrees of freedom 

has 7s functionally independent differential invariants and parameters of potential 

energy V (including also function V ) I,, I,, . . ., In, then none of the co- 
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ordinate systems contains ignorable coordinates. 
Thus a dynamic system can have ignorable coordinates only when the number of 

independent functions I,, . . ., I, in it is smaller than the number of generalized 
coordinates. We shall show that when k = n - 1 the existence of an ignorable 
coordinate is effectively determined by differentation and simple algebraic operations. 
For this we use the Whittaker theorem [4] : if a dynamic system admits the integral 

ci ($9 . * *, q”) q+ = const (3.2) 

there exists transformation (3.1) by which the system Lagrangian is transformed to the 
form with the ignorable coordinate Q”. Note that the theorem is invalid 112 1 when (3.2 ) 
is a partial integral of Lagrange equations of the system. Structure of the Lagrangian 

WAS investigated for this case in [2 - 14 ] and the obtained results are given in the survey [15 1. 

Let us now assume that n - 1 independent invariant functions I, are known, 
Their expressions in terms of new coordinates do not contain Q”, i. e. 

aI a,i 
-&- 
aq’ aQ” 

=0 (r=l,...,n-1) 

hence 

aqf/aQ” = mfol (i = 1. . . . , n) 

where mi (q”, . . ., qn) are known functions and o (q’, . . . , qn) is some unknown 

function which is not identically zero. In new coordinates integral (3.2) is of the form 

aL - = const 
aL a& 

?- = const 
aQ’” aq’J aQ’” 

where L is the system Lagrange function. But for any j 

a8 -= aqj _ mj, 
aQ*” aQ” 

hence integral (3.2) can be represented as 

aL 

2 
mica = const (3.3 1 

To ascertain the existence of an ignorable coordinate it is necessary, according to 

Whittaker’s theorem, to check whether the Lagrange equations admit integral (3.3 ) . 

Differentiating (3.3 ) with respect to time on the basis of Lagrange equations we obtain 

aL 
?rnjo+ 

aL a(mfo) 

w 
F ------4” = 0 
aq*J a& 

This relationship must be an identity . Equating in it coefficients at generalized 
velocities to zero, we obtain not more than n (n-j-1)/2 equations in partial deri- 
vatives of the first order with respect to the unknown function 0. Analysis of the 

compatibility of equations is effected with the use of Jacobi’s brackets [16 1. If the sys- 
tem of equations proves to be compatible only for a=(), the considered dynamic 

system does not contain linear integrals. When. however, the system of equations is 
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compatible for 0 = o(J+o, expcession (3.3 ) is an integral of the dynamic sys- 
tem when o=oo . 

EX a m pl e . Let us consider the Lagrange function 

L = 1/2 (,‘a + y’a + 2.2) - 1/z (kls2 + k,y2 + k3z2) 

where kl, k,, and k, are constants. Such function defines, for instance, the small 

oscillations of a particle suspended on three mutually perpendicular springs of k,, k,, 
and k3 stiffness. 

We introduce the invariant functions 

V = 1/2 (kls2 + k,y2 + k,z2), A,V = k12z2 + ka2y2 + kz2z2 

V (V, A1 V) = 2 (k,%+ + ks3y2 + kz3z2) 

When the three numbers k,, k,, and k, are different, these functions are in- 
dependent and, consequently, the system cannot have an ignorable coordinate. 

If k, = k, # k, , functions V and A,V are independent, Proceeding in 
this manner we obtain 

and formulas (3.3 > in the form 

0 (YX’ - xy’) = const (3.4) 

When o f 0, the conditions of existence of integral (3.4 ) 

&II ao ao 
=-z-=0 

ax ay dz 

are compatible and, consequently, the system of coordinates with an ignorable co- 
ordinate exists. In cylindrical coordinates r, (p, z the Lagrange function obviously 

does not contain ‘p. 
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